Maximum-norm estimates for resolvents of elliptic finite element operators

نویسندگان

  • Nikolai Yu. Bakaev
  • Vidar Thomée
  • Lars B. Wahlbin
چکیده

Let Ω be a convex domain with smooth boundary in Rd. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on Ω is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane, and conversely. Here we show directly that such a resolvent estimate holds outside any sector around the positive real axis, with arbitrarily small angle. This is useful in the study of fully discrete approximations based on A(θ)-stable rational functions, with θ small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent Estimates for Elliptic Finite Element Operators in One Dimension

We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...

متن کامل

A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems

We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...

متن کامل

ar X iv : 0 71 1 . 39 28 v 1 [ m at h . N A ] 2 5 N ov 2 00 7 A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS ∗

Abstract. We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then estab...

متن کامل

Error Estimates for Finite Element Approximations of Elliptic Control Problems

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.

متن کامل

Resolvent estimates of elliptic differential and finite-element operators in pairs of function spaces

We present some resolvent estimates of elliptic differential and finite-element operators in pairs of function spaces, for which the first space in a pair is endowed with stronger norm. In this work we deal with estimates in (Lebesgue, Lebesgue), (Hölder, Lebesgue), and (Hölder, Hölder) pairs of norms. In particular, our results are useful for the stability and error analysis of semidiscrete an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003